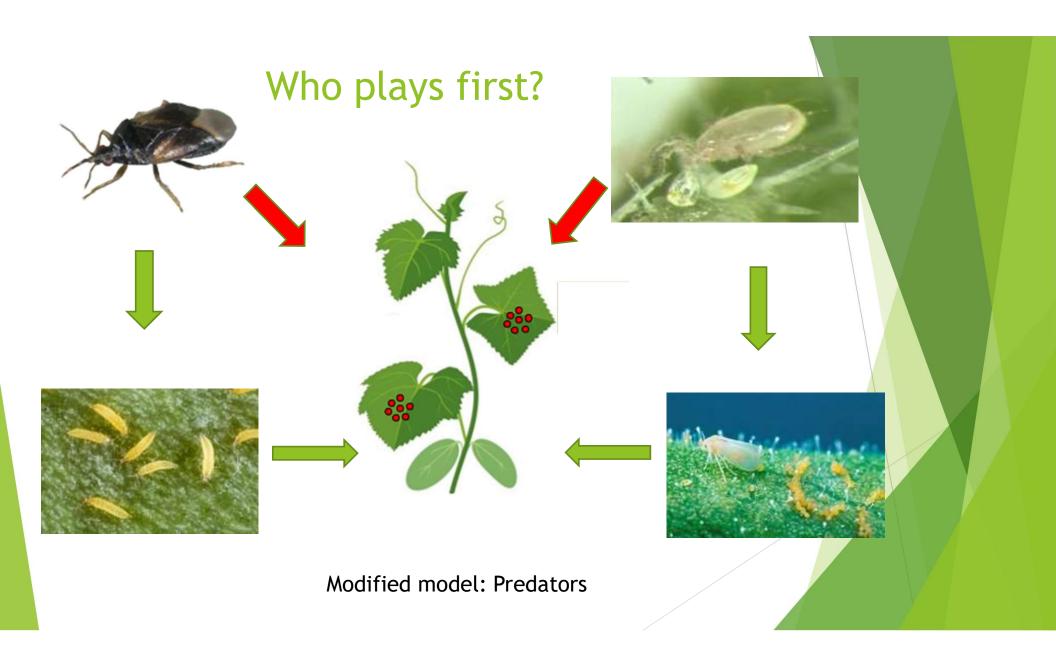
Biocontrols: Supplemental Foods and Application Strategies


Greenhouse Biological Control Conference,
Connecticut Agriculture Experiment Station
June 19, 2019

Steven Arthurs, <u>steven.Arthurs@biobee.us</u>

Justin Leavitt, Rami Ben Dor (General Manager)

BioBee USA

Why supplemental foods?

- ► Early establishment
- ► Increase longevity/reproduction
- Promote effectiveness of biocontrol
- ► Application on 'hostile' crops

Sachets and banker plants are other forms of supplemental foods!

L to R: pollen, Ephestia eggs, and Artemia cysts (Photos: BioBee and Biobest)

Beneficial/supplemental foods

	Species	Pollen	Ephestia	Artemia
		(Typha)	eggs	(decapsulated)
Mites	N. cucumeris	+	+	+
	N. californicus	+	+	+
	A. swirskii	+	+	+
	A. limonicus	+	+	+
	A. andersoni	+*		
	I. degerans	+	+	+
Insects	Orius insidiosus	±	+	
	Dicyphus hesperus	±	+	+
	Chrysoperla		+	

^{*}Different pollen

(Source: Kiman & Yeargan 1985; Duso & Camporese 1991; Cocuzza et al. 1997; Van Rijn & Tanigoshi 1999; Vangansbeke et al. 2014; Delisle et al. 2015; Khanamani et al. 2016; Labbé et al. 2018)

Cattail pollen on a cucumber leaf provides a supplemental food source for predatory mites. Photo credit: Heidi Wollaeger, MSU Extension

Pollen gun used to distribute cattail pollen (Nutrimite, Biobest) over a high-wire cucumber crop. Photo credit: Heidi Wollaeger, MSU Extension

Crops where pollen can be used

- Ornamentals with little airborne pollen
- ► Vegetable crops before flowering
- Vegetable crops with little pollen such as cucumber
- ▶ Plant propagation

Does pollen always work?

- "The presence of pollen led to a 55% reduction in predation of the thrips by N. cucumeris and a 40% reduction in thrips predation by O. laevigatus, in experiments using single predators" (Skirvin et al. 2007).
- The rate of thrips predation by *A. swirskii* can be reduced by 50% when pollen is present" (Leeman and Messenlink et al. 2015)

Ephestia

- ► Sterile eggs of flour moth
- Used with Predatory bugs: Dicyphus, Nesidiocoris and Orius
- Crops: Fruiting vegetables such as tomato and eggplant
- ► Targets: whitefly, spider mites and caterpillars
- Sometimes blended with Artemia cysts to reduce costs

Artemia

- ▶ Derived from cysts of brine shrimp *Artemia* spp.
- Cheaper and stores better compared with Ephestia with similar nutritional balance
- Mold-resistant
- ► Low grade product used with predatory mirids
- Higher grade products used with Amblyseius and Orius spp.
- ► Crops: ??

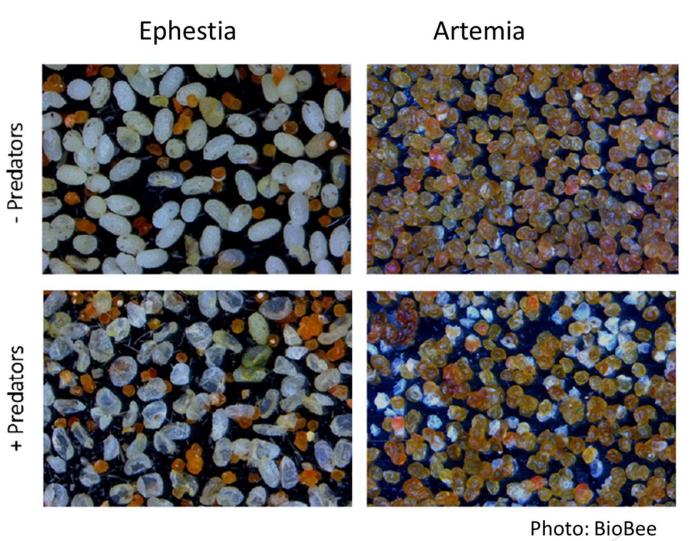

High-grade Artemia

Photo: BioBee

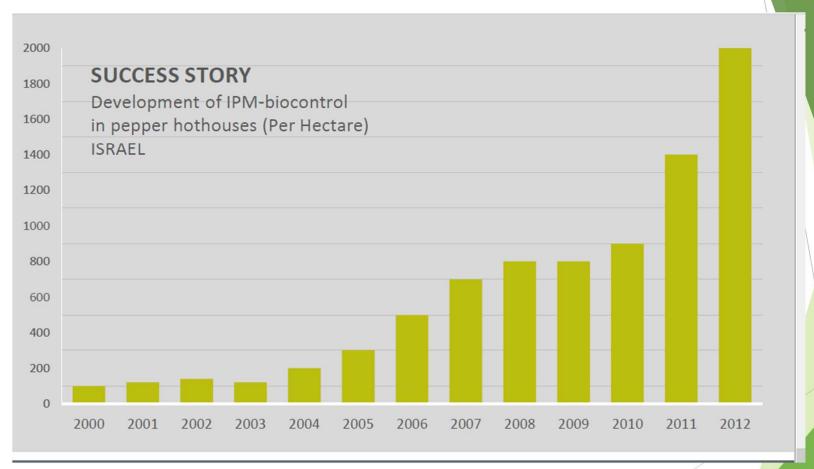
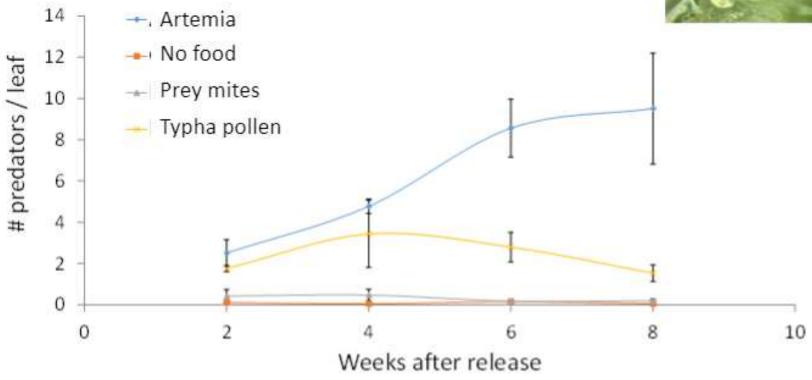


Photo: BioBee


High grade Artemia cysts used to establish swirskii in sweet pepper seedlings (Photo BioBee)

Source: BioBee

Swirskii establishment on rose

Source: Biobee

Banker plants

- Open rearing units
- Predatory mite 'sachets' are a type of modified banker plant
- Systems for aphids, thrips and whiteflies
- ▶ Other possibilities?

Photo: University of Florida

Example of banker plant systems used in greenhouse and nursery

Pest	Banker plant	Food source	Natural enemy	Approx # per
				acre
Aphids	Oat, rye, wheat	Bird cherry	Aphidius colmani, Aphidoletes	2
		aphid	aphidimyza	
Thrips	Ornamental	Pollen	Orius insidiosus, A. swirskii	100
	peppers			
	Castor bean	Pollen	Iphesius degerans	100
Whitefly	Mullen	Plant sap	Dicyphus hesperus	40
	Papaya	Papaya	Encarsia sophia	?
		whitefly		
Mites	Corn	Banks grass	Feltiella acarisuga	3
		mite		

(Frank 2010; Huang et al. 2011; Xiao et al. 2011a,b).

Orius banker plant: Greek basil in cucumber http://www.biologicalservices.com.au/

Habitat basket of ornamental pepper and lobularia to sustain Orius (Photo University of Vermont)

Papaya banker plant for whitefly control (Photo: University of Florida)

Survival times of common predatory mite

Species	Adult longevity (days)		
	No food or water	Water only	Food+water
I. degenerans	2-4	4	25
N. cucumeris	2-4	10	28
N. californicus	2-4	18	58
P. persimilis	2-4	6	19

Williams et al. (2004). Exp. & Appl. Acar. 32(1-2).

APPLICATION STRATEGIES

How many ways to apply your bios?

Common bottle sizes for *P. persimilis* and equivalent application rates

Bottle size (ml)	Quantity	Mites/ml	Application rate (ml/1000 sq ft)**
100	2k	20	50
	4k	40	25)
250	2k	8	125
500	10k	20	50
1000	4k	4	250
	10k	10	100
	25k	25	40

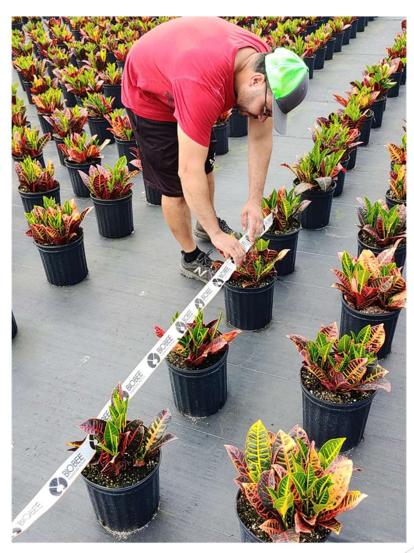
^{** @ 1} mite/sq ft.

Different bottle 'delivery approaches' with predatory mites

Commercial preparation of predatory mites in carrier being hand-applied to ornamental palms. Photograph by Bill Lewis, Delray Plants.

persimilis 'dosing' in strawberries

Harvest crew applying predators on organic farm (Photo: Biobee USA)


Application in palm leaf axils

'Pot-tight'

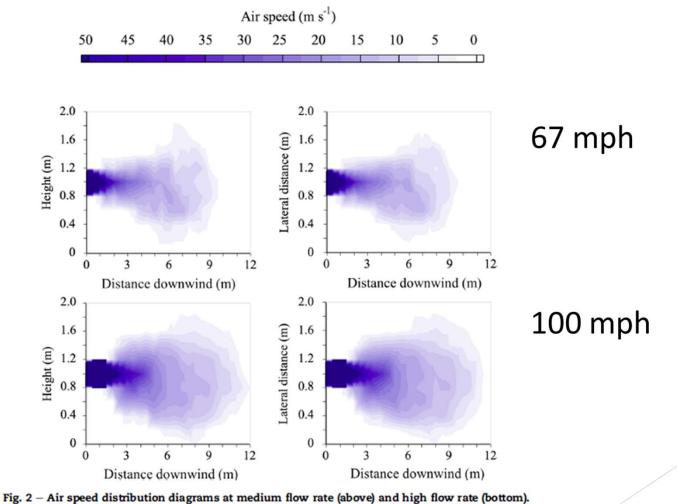
'Spaced'

Supplemental feeding tape and 'plant bridge'

'Non-carrier' application

Persimilis 'bulk' after harvest. Photo Shimon Steinberg, BiobBee

BLOWERS



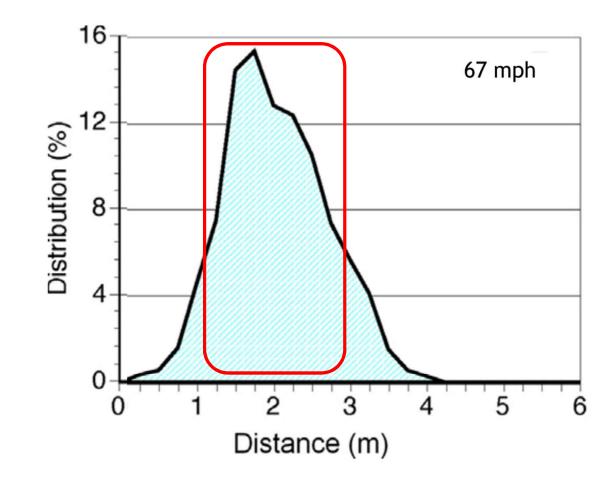


Fig. 1 — Mechanical blower: a) bottle containing beneficial organisms; b) extraction system; c) electromagnet; d) air diffuser.

(Pezzi et al. 2012)

Distribution pattern of carrier materials from blower (Pezzi et al. 2012)

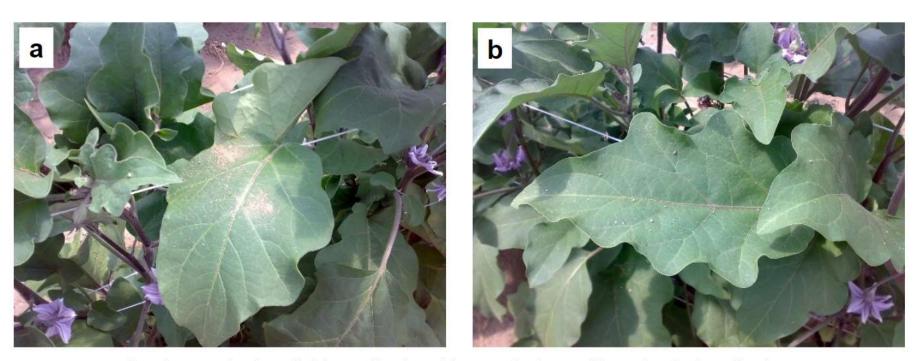
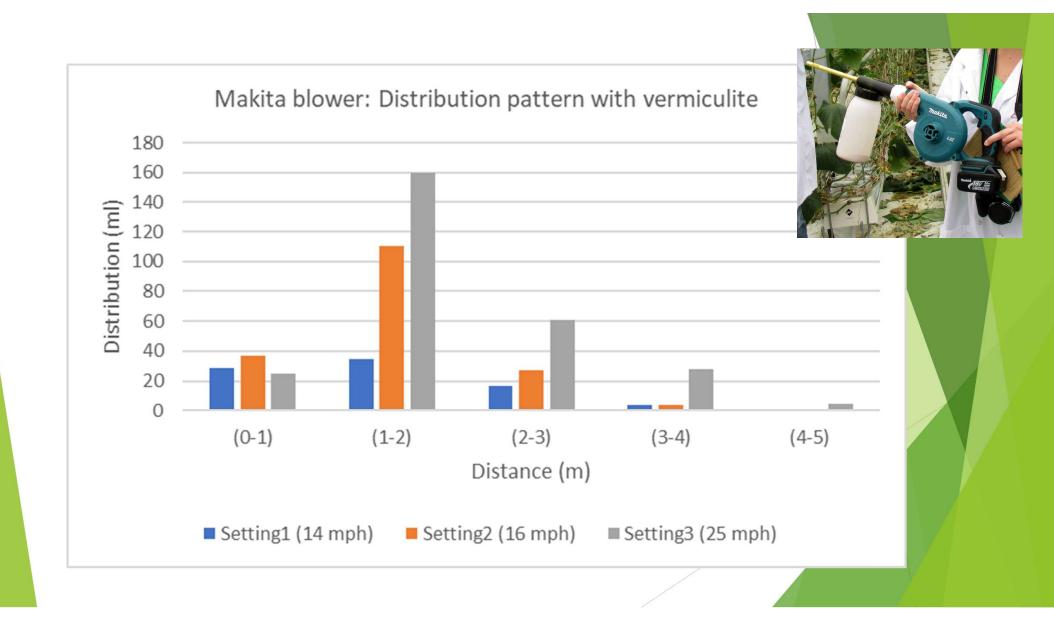



Figure 3. Eggplant leaves after beneficials application: (a) manual release; (b) mechanical application.

(Lanzoni et al. 2017)

Studies assessing blower effects on predatory mite

Species	Blower	Survival	Fecundity/reproduction	Control	Reference
	speed			efficiency	
Persimilis	67 mph	No sig. effect	No sig. effect	-	Pezzi et al. (2015)
		-	-	No sig. effect	Lanzoni et al. (2017)
	100 mph	No sig. effect	No sig. effect	-	Pezzi et al. (2015)
	NA	Reduced (up to 55%)	-	-	Opit et al. (2005)
Swirskii	67 mph	No sig. effect	No sig. effect	-	Pezzi et al. (2015)
3, - 0 0, 3 00-0					
		-	-	No sig. effect	Lanzoni et al. (2017)
Cucumeris	NA	Reduced (up	-	-	Opit et al. (2005)
\		to 27%)			
		No sig. effect	-	-	Van Driesche et al. (2002)

^{*}Compared with manual application

Coverage estimates (A/hr) with hand held blowers

	Blower	Manual sprinkling	Reference	
Persimilis	1.7		Blandini et al. 2008	
Persimilis/swirskii	1.4	0.1	Pezzi et al. 2015	
Persimilis	1.3		Giles et al. 1995	
A. cucumeris	0.9		Van Driesche et al. 2	002
Persimilis/cucumeris	0.6		Opit et al. 2005	

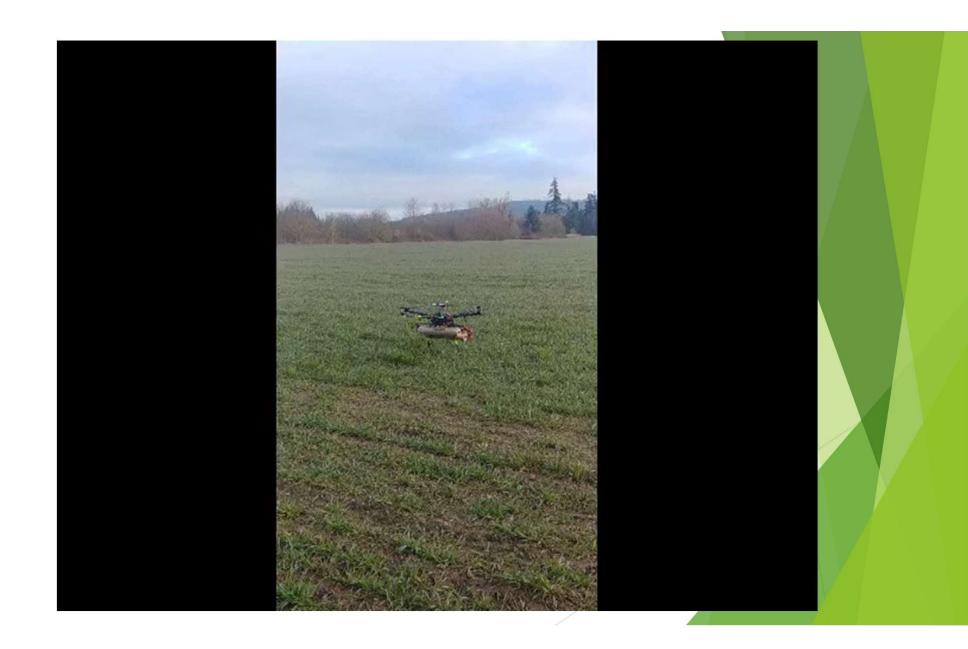
Commercial preparation of predatory mites being air applied (blown) on to ornamental palms. Photograph by Bill Lewis, Delray Plants.

Blandini et al. (2008)

AERIAL APPLICATION

Release of Predatory Mites (Acari: Phytoseiidae) by Aircraft for the Biological Control of Spider Mites (Acari: Tetranychidae) Infesting Corn

C. H. PICKETT, F. E. GILSTRAP, R. K. MORRISON, AND L. F. BOUSE


Department of Entomology, Texas A&M University, College Station, Texas 77843-2475

J. Econ. Entomol. 80: 906-910 (1987)

ABSTRACT Phytoseiulus persimilis Athias-Henriot were released by conventional light aircraft onto field corn for the control of spider mites in the Texas high plains. Released P. persimilis occurred on 55-75% of plants at one of the three treated study sites. The spatial distribution of P. persimilis at this site was uniform to random. P. persimilis established colonies at the other two study sites, but occurred only at light densities due to factors other than the aerial-release equipment.

KEY WORDS Oligonychus pratensis, Tetranychus urticae, Phytoseiulus persimilis, aerial release, corn, biological control

Drone versus manual application

Advantages	Disadvantages	
Speed (1 acre > 10 minutes)	Accuracy (especially wind)	
Cost (\$15-20 per acre)	Lack of scouting when applying	
Application in orchards and tall crops and difficult terrain	Potential effects on ben <mark>eficials</mark>	
Labor savings	Require 1-full time operator	

QUESTIONS?

